STATE HEALTH PLAN FOR FACILITIES AND SERVICES:
SPECIALIZED HEALTH CARE SERVICES - ORGAN TRANSPLANT SERVICES
COMAR 10.24.15

Effective February 27, 2017
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>Incorporation by Reference</td>
<td>1</td>
</tr>
<tr>
<td>.02</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A. Purposes of the State Health Plan</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B. Legal Authority of the State Health Plan</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>C. Organizational Setting of the Commission</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>D. Plan Content and Applicability</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>E. Effective Date</td>
<td>4</td>
</tr>
<tr>
<td>.03</td>
<td>Issues and Policies</td>
<td>5</td>
</tr>
<tr>
<td>.04</td>
<td>Standards</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>A. General Standards</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>B. Project Review Standards</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(1) Need</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(2) Minimum Volume Requirements</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(3) Access</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(4) Cost Effectiveness</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>(5) Impact</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>(6) Certification and Accreditation</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(7) Health Promotion and Disease Prevention</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>(8) Comparative Reviews</td>
<td>31</td>
</tr>
<tr>
<td>.05</td>
<td>Definitions</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 1: Categories of Covered Transplant Services

Table 2: Minimum Annual Case Volume Requirements by Organ Type

Table 3: Annual Threshold Case Volume Requirements by Type of Organ
State Health Plan for Facilities and Services: Specialized Health Care Services – Organ Transplant Services

.01 Incorporation by Reference.

This chapter of the State Health Plan for Facilities and Services: Specialized Health Care Services - Organ Transplant Services (Chapter) is incorporated by reference in the Code of Maryland Regulations.

.02 Introduction.

A. Purposes of the State Health Plan.

The Maryland Health Care Commission (the Commission) has prepared this Chapter of the State Health Plan for Facilities and Services (State Health Plan) in order to meet current and future health care system needs of all Maryland residents by assuring access, quality, and cost-efficiency.

The State Health Plan serves two purposes:

(1) It establishes health care policy to guide the Commission's actions. Maryland law requires that all State agencies and departments involved in regulating, funding, or planning for the health care industry carry out their responsibilities in a manner consistent with the State Health Plan and available fiscal resources; and

(2) It is the legal foundation for the Commission's decisions in its regulatory programs. These programs ensure that changes in services for health care facilities are appropriate and consistent with the Commission's policies. The State Health Plan contains policies, standards and service-specific need projection methodologies that the Commission uses in making decisions on applications for Certificate of Need (CON), Certificates of Conformance, and Certificates of Ongoing Performance.
B. Legal Authority of the State Health Plan.

The State Health Plan is adopted under Maryland’s health planning law, Maryland Code Annotated, Health-General (Health-General) §19-114 - 19-131. This Chapter partially fulfills the Commission’s responsibility to adopt a State Health Plan at least every five years and to review and amend the State Health Plan as necessary. Health-General §19-118(a)(2) provides that the State Health Plan shall include:

(1) The methodologies, standards, and criteria for CON review; and

(2) Priority for conversion of acute capacity to alternative uses where appropriate.

C. Organizational Setting of the Commission.

The Commission is an independent regulatory agency functioning administratively within the Department of Health and Mental Hygiene (DHMH) whose mission includes planning for health system needs. The purposes of the Commission, as provided in §19-103(c), include:

(1) Development of health care cost containment strategies to help provide access to appropriate quality health care services for all Marylanders, after consulting with the Health Services Cost Review Commission;

(2) Promotion of the development of a health regulatory system that provides, for all Marylanders, financial and geographic access to quality health care services at a reasonable cost by advocating policies and systems to promote the efficient delivery of and improved access to health care services, and enhancing the strengths of the current health care service delivery and regulatory system.
The Commission has sole authority to prepare and adopt the State Health Plan and to issue Certificates of Need, Certificates of Conformance, Certificates of Ongoing Performance and exemptions based on the State Health Plan. Health General §19-118(e) provides that the Secretary of the DHMH shall make annual recommendations to the Commission on the State Health Plan and permits the Secretary to review and comment on the specifications used in its development. Health-General §19-110(a), however, clarifies that the Secretary does not have the power to disapprove or modify any determinations the Commission makes regarding or based upon the State Health Plan. The Commission pursues effective coordination of its health planning functions with the Secretary, with State health-related agencies, and with the Health Services Cost Review Commission in order to assure an integrated, effective health care policy for the State. The Commission also consults the Maryland Insurance Administration as appropriate.

D. Plan Content and Applicability.

This Chapter specifies requirements to obtain a CON for the establishment of new solid organ and transplantable cell services. Under Health-General § 19-120(j)(2)(iii)2 and COMAR 10.24.01.02(4)(b), a CON is required for the establishment of organ transplant surgery. A separate CON is required for the development of a new transplant service in each of the categories listed in Table 1 below, whether or not the general hospital has another type of organ transplant service. A general hospital that is authorized to provide one or more types of organ transplant services may not perform another type of organ transplant without CON approval because surgical specialization and post-surgical management of patients are unique for each organ transplant type. In addition, a merged hospital system may not relocate any part of any
existing organ transplant program to another general hospital within its system without obtaining a CON.

Table 1. Categories of Covered Transplant Services

<table>
<thead>
<tr>
<th>Solid Organ Services</th>
<th>Kidney</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liver</td>
</tr>
<tr>
<td></td>
<td>Pancreas</td>
</tr>
<tr>
<td></td>
<td>Heart</td>
</tr>
<tr>
<td></td>
<td>Lung</td>
</tr>
<tr>
<td></td>
<td>Heart/Lung</td>
</tr>
<tr>
<td></td>
<td>Intestine (small bowel)</td>
</tr>
<tr>
<td>Hematopoietic Stem Cell (Bone Marrow) Services</td>
<td>Autologous</td>
</tr>
<tr>
<td></td>
<td>Allogeneic</td>
</tr>
<tr>
<td>Other Transplantable Cells</td>
<td>Islet Cells</td>
</tr>
<tr>
<td></td>
<td>Hepatocytes</td>
</tr>
<tr>
<td>Other</td>
<td>Vascular composite allograft</td>
</tr>
</tbody>
</table>

E. Effective Date.

An application or letter of intent submitted after the effective date of these regulations is subject to the provisions of this chapter.
.03 Issues and Policies.

Organ transplantation is the process of surgically transferring a donated organ into a patient with end-stage organ failure. It also includes the transfer of a vascularized human body part containing multiple tissue types (skin, muscle, bone, nerves, and blood vessels) as an anatomical or structural unit from a human donor to a human recipient, when such a transfer is susceptible to allograft rejection that generally requires immunosuppression for the recipient, and other specified criteria are met.1 Organ transplantation is often the only treatment for the end-stage failure of certain organs such as the liver and heart, and it is the most cost-effective treatment for the management of other organ failure such as kidney failure, which is otherwise managed with peritoneal dialysis or hemodialysis.2 Transplants are provided to segments of the population that are the most severely ill and at the highest risk for poor outcomes. As noted in Table 1, for purposes of regulation under this Chapter, organ transplantation refers to the major solid organs (kidney, liver, pancreas, heart, and lung), intestine (small bowel), hematopoietic stem cells, other transplantable cells, and vascular composite allografts (VCAs).

Regulation of Organ Transplantation

The National Organ Transplant Act (NOTA) of 1984 provided for the establishment of the national Organ Procurement and Transplantation Network (OPTN) in response to the growing need for donor organs and for a more centralized and national organ donation registry. Before this law was passed, hospitals and regional hospital collaborations relied on a supply of donor organs within their own networks for their own patients in need. The OPTN links all of

1 42 CFR §121.2
the hospitals, health care professionals, and other organizations involved in the donation and organ transplantation system. The primary goals of the OPTN are to increase organ sharing effectiveness and efficiency and improve equity in organ allocation. While OPTN is responsible for developing organ transplantation policy, the Scientific Registry of Transplant Recipients (SRTR) also plays a role by providing ongoing evaluation and data analysis necessary for policy makers to make informed decisions.

NOTA requires the OPTN network to be operated by a private non-profit organization under a federal contract. The Department of Health and Human Services (HHS) first awarded the OPTN contract to the United Network for Organ Sharing (UNOS) in 1986. UNOS develops, monitors, and enforces the rules governing allocation, procurement, and transplantation of all organs (not including bone marrow transplants), as approved by HHS. UNOS manages the waiting list for organ transplants in the U.S. and matches donors to recipients. One of the goals of UNOS is to increase the number of organs available for transplantation and to maximize the efficient use of available organs through equitable and timely allocation. In order to efficiently and equitably distribute organs to those who need an organ transplant, UNOS’s board of directors approved criteria based on medical and logistical factors and incorporated the criteria in a computer matching system that generates a rank-order list of candidates to be offered each organ. The candidates with the highest ranking are those

4 42 USC §273
7 Ibid.
who most urgently need an organ transplant and who have the best chance of survival following an organ transplant.\(^8\)

UNOS divides the U.S. into 11 regions.\(^9\) This regional system provides a mechanism for communication between UNOS and the organ transplant community and provides a forum for consensus building. Maryland falls within Region 2, which also includes Delaware, the District of Columbia (D.C.), New Jersey, Pennsylvania, West Virginia, and Northern Virginia. Within regions, Organ Procurement Organizations (OPOs) are designated by the Centers for Medicare & Medicaid Services (CMS) to facilitate organ procurement and transplantation at the local level, with only one OPO designated to each Donation Service Area (DSA).\(^10\) OPOs are required to meet certain standards for process and outcome measures. Outcome measures include the donation rate of eligible deaths, the number of organs transplanted per standard criteria donor, the number of organs transplanted per expanded criteria donor, and the number of organs used for research per donor.\(^11\) The process measures include participation in the organ procurement and transplantation network, data reporting requirements, organ transport preparation and transport requirements, and implementation of a quality assessment and performance improvement program.\(^12\)

Currently, two OPOs provide organ procurement and distribution services to Maryland jurisdictions. The Washington Regional Transplant Community (WRTC) is the OPO serving: the District of Columbia; Montgomery, Prince George's, and Charles Counties in Maryland; Arlington, Clarke, Fairfax, Fauquier, Loudoun, King George, Prince William, and Spotsylvania Counties located in northern Virginia; and the cities of Alexandria, Fairfax, Falls Church,

\(^{8}\) Ibid.
\(^{9}\) Ibid.
\(^{10}\) 42 CFR §486.308
\(^{11}\) 42 CFR §486.318
\(^{12}\) 42 CFR §486.320-486.348
Manassas, and Manassas Park in Virginia. The Living Legacy Foundation in Maryland (LLC) is the OPO serving western and central Maryland, the Eastern Shore, Calvert, and St. Mary's Counties in southern Maryland. The health planning regions for CON review of an application to establish or relocate organ transplant services in Maryland shall be consistent with the OPO designations. For purposes of this chapter, the health planning regions will change, as needed, to reflect any changes in the designated service areas of the OPOs.

Specialized Health Care Service

Organ transplantation is a specialized tertiary-level health service that requires clinical expertise and a hospital setting with the most advanced diagnostic, surgical, and monitoring equipment. Deceased donors provide kidneys, pancreas, liver, lungs, heart, intestines, and bone marrow. Living donors can provide a kidney, bone marrow, or a portion of the liver, lung, or intestine.13 In 2014, 68 percent of the kidneys transplanted came from deceased donors and 32 percent from living donors.14 Kidney transplants decreased by about nine percent between 2012 and 2014, from 18,78315 to 17,107.16

For specialized services, the public is best served if a limited number of general hospitals provide specialized services to a substantial population base. This pattern promotes high quality care and an efficient scale of operation. As discussed later, higher volume organ transplant programs are often associated with better patient outcomes. To gain these benefits, a large population base is necessary to ensure that programs have adequate caseloads.

Cost Effectiveness

Tertiary care interventions tend to occur late in the disease process. Since these interventions are provided to segments of the population that are the most severely ill and at the highest risk for poor outcomes, the diagnostic and therapeutic services are more advanced, and the cost of staffing and equipping these specialized health care services is very high. Transplantation is often considered to be the most cost-effective treatment for the failure of certain organs. Although the initial cost of the kidney transplant and hospitalization is likely very high based on estimated average billed charges in 2014 of $140,100\(^\text{17}\) compared to the estimated cost for Medicare beneficiaries receiving hemodialysis ($84,550 per year in 2013),\(^\text{18}\) the cost per year for care following transplantation decreases significantly. The average annual cost for Medicare beneficiaries who had previously received a kidney transplant was $29,920 in 2013, which is much less than the reported average annual cost for Medicare beneficiaries who received dialysis in 2013 ($69,919).\(^\text{19}\) In addition, many individuals who receive a kidney transplant have an improved survival rate and a better quality of life than individuals on hemodialysis.\(^\text{20}\)

Organ failure, leading to the need for organ transplantation, often is the result of preventable disease and lifestyle behaviors.\(^\text{21}\) When addressed early in a disease process, risk

\(^{19}\) Ibid.

factors can often be reduced, and organ failure can sometimes be slowed or halted. Education efforts should focus on prevention, early detection, and treatment of diseases and conditions such as diabetes, coronary artery disease, alcohol and substance abuse, and hypertension that may lead to end-stage organ failure. Education efforts should also focus on increasing the number of potential organ donors, particularly living donors. The outcomes of living donor transplants have been reported to be better than the outcomes of deceased-donor transplants due to improved graft survival rates and a reduction in acute rejection rates.

Quality of Care

CMS regulations for participation in the Medicare and Medicaid programs serve to promote the provision of high quality patient care for transplant recipients. In order for a transplant program to participate with Medicare, the program is required to meet certain conditions of participation pertaining to data submission, clinical experience, and outcome requirements. The outcomes evaluated are a transplant center’s observed number of patient deaths and graft failures one-year post transplant, as compared to the transplant center’s expected number of patient deaths and graft failures after risk adjustment. Only a few types of organ transplant centers are exempt from the performance outcome requirements in 42 CFR §482.80

24 42 CFR §482.80

25 42 CFR §482.80(c)(1)
(c)(2). Requiring all organ transplant programs in Maryland to participate with Medicare and Medicaid assures that the quality of programs will be closely tracked. In addition, the requirements that Maryland’s organ transplant programs maintain certification from UNOS and that Maryland’s stem cell transplant programs meet Foundation for the Accreditation of Cellular Therapy (FACT) requirements promote the provision of high quality patient care.

The literature on the relationship between volume and outcomes for transplant services is mixed and varies among organ types. For example, two studies found that one-year graft and patient survival outcomes for kidney transplant services are associated with higher volume programs, but neither of these studies identified a clear minimum volume threshold.\(^\text{26}\) A 2009 study concluded that center volume is not a significant factor affecting patient survival.\(^\text{27}\) The authors of this study noted that its contrary findings may be attributed to the study design, which incorporated an analysis period from the time of listing for a transplant rather than only post-transplant events.\(^\text{28}\) For lung transplants, one study concluded that high volume lung transplant centers did not have lower rates of postoperative complications compared to low volume lung transplant centers, but that low case volume was a significant risk factor for higher mortality rates at 90 days, one year, and five years post-transplant.\(^\text{29}\) A 2010 study also concluded that

\(^{28}\) Ibid.

high lung transplant center volume is associated with long-term survival, but that other unidentified characteristics of centers also significantly affect outcomes.30

Studies of heart transplant services have consistently concluded that transplant centers with higher volumes have lower mortality rates and fewer post-operative complications. A systematic review of studies examining the relationship between heart transplant center volume and patient mortality concluded that risk adjusted mortality was lower at high-volume centers compared to intermediate and low-volume centers.31 Another study that examined both post-transplant graft survival at one year, primary graft failure within 30 days, and morbidity during transplant hospitalization concluded that both post-transplant graft failure within one year and primary graft failure are associated with low annual transplant center volume.32 This study also concluded that the relationship between volume and outcomes is stronger for patients at higher risk for adverse outcomes, with high risk patients having superior outcomes at high and intermediate volume centers compared to low-volume centers.33 Another study that examined one-year mortality for orthotopic34 heart transplant patients reached similar conclusions: high volume centers minimize the effects of risk for transplant recipients, and low volume centers amplify the odds of one-year mortality associated with higher risk recipients.35 This study also noted that, as transplant volume increases from zero to ten orthotopic heart transplants, there is a

33 Ibid.

34 An orthotopic heart transplant entails first removing the recipient’s failing heart and then replacing it with a donor’s heart.

steep decline in one-year mortality across all four tiers of recipient risk.36 Despite reaching this conclusion, the authors of this study cautioned that certain low volume centers achieve excellent outcomes across the spectrum of recipient risk and that directing more high risk patients to high volume centers could have negative consequences as a result of patient travel that affects postoperative compliance.37 Another study investigated the relationship between heart transplant center volume and complication-driven mortality.38 This study concluded that low-volume transplant centers had a greater incidence of complications resulting in significantly reduced 90-day, one-year, and five-year risk adjusted survival rates.39 However, the authors also noted that the causal basis for the difference could not be identified without examining additional variables not available through the database used.40

For liver transplants, multiple studies have concluded that outcomes, such as mortality rates, are better for high volume liver transplant centers compared to low volume centers. One study concluded that one-year mortality rates after risk adjustment were significantly higher at low volume liver transplant centers compared to high volume liver transplant centers.41 Two later studies concluded that, for high and very high risk patients, mortality rates were lower at high volume transplant programs compared to low volume programs.42 Another study examined the impact of liver transplant center volume on graft failure and concluded that graft loss was not

36 Ibid.
37 Ibid.
39 Ibid.
40 Ibid.
associated with transplant center volume. However, this study concluded that other center characteristics have a significant effect, but only some of the sources of this effect could be identified.

Although studies of the relationship between organ transplant center volume and patient outcomes fail to conclusively demonstrate that concentrating volume at as few transplant centers as possible would likely lead to optimal patient outcomes, there may be other reasons to favor higher volume centers. One benefit of maintaining fewer, higher volume, transplant centers may be more efficient use of hospital resources. Minimum volume requirements for organ transplantation services are necessary to maintain the skills of the entire transplant team and to assure the provision of high quality patient care, as indicated by the conditions of participation in Medicare and Medicaid for clinical experience.

In addition to transplant center volume affecting patient outcomes, race, socioeconomic status, and other factors have been linked to patient outcomes following organ transplants. One recent national study of outcomes for kidney transplant recipients concluded that difference in outcomes for Caucasian and African American adults who received a living donor kidney (LDK)

44 Ibid.
46 42 CFR §482.80(b)
or deceased donor kidney (DDK) have improved over the period 1990 to 2012, but differences still persist.48 Over this period, five-year graft loss for DDK transplant declined from 51.4\% to 30.6\% for African American patients and from 37.3\% to 25.0\% for Caucasian patients.49 In addition, African American patients in the first cohort were 39\% more likely than Caucasian patients to experience a five-year graft loss compared to 10\% more likely for the most recent cohort.50 However, for the most recent cohort of one-year and three-year graft outcomes of both LDK and DDK transplants cited in the study, there was not a statistically significant difference between African American and Caucasian patients.51 An earlier national study, for the period 1999-2008, that evaluated outcomes for kidney transplant patients had concluded that long term outcomes for both DDK and LDK were worse for African Americans compared to other racial or ethnic groups.52 This study also concluded that DDK transplants for Asian and Hispanic individuals have the best outcomes with respect to mortality and graft survival at one-year, five-years, and ten-years post-transplant.53 A national study of kidney transplant candidates listed in the period 1999 to 2009 concluded that individuals in the highest socioeconomic quartile had increased access to transplants compared to those in the lowest socioeconomic status and also had lower mortality rates while on the waitlist.54 The authors of this study noted that better

49 Ibid.

50 Ibid.

51 Ibid.

53 Ibid.

access for high socioeconomic individuals was largely driven by a higher likelihood of a living donor transplant.55

\textit{Access to Care}

Many factors affect an individual’s access to organ transplant services. Barriers to access may be financial, social, biological, or geographic. With regard to geographic access, this Chapter maintains the long-standing three-hour, one-way drive time standard for reasonable geographic access. Currently, over 95\% of Maryland’s population has access to organ transplant services within a three-hour, one-way drive time. Geography also has historically played a key role in the UNOS allocation system for organs, which prioritizes access within OPOs and regions based on the source of the organ donor.56 Biologically, certain individuals have more potential organ matches, and the extent to which a donor organ is compatible with a potential recipient historically has strongly influenced access to an organ transplant.57 An individual’s access to health insurance and the financial resources to cover the costs of health care preceding and following an organ transplant may also strongly determine access to an organ transplant. A person’s financial resources may influence his or her access to an organ transplant because a person must be able to cover the cost, over their lifetime, of the immunosuppressive drugs required to minimize the chances of graft failure and to cover costs that may not be covered by insurance or other third-party payers.58 Social determinants may

55 Ibid.
affect an individual’s risk for diseases that lead to the need for an organ transplant, access to a living donor for a kidney transplant, and access to a deceased donor kidney.59

For over a decade, there has been an ongoing effort to reform the UNOS allocation system for various types of organs in order to provide more equitable access to organs, such as kidneys.60 Until December 4, 2014, the UNOS kidney allocation system gave the highest priority to transplant candidates who were perfect matches in human leukocyte antigen genes because better matching of these genes reduces the probability of graft failure due to the transplant recipient’s immune system attacking cells recognized as foreign.61 In addition, a transplant candidate in the same OPO as the organ donor was also given higher priority, followed by those in the same UNOS region.62 Under the new kidney allocation system, higher priority is given to candidates with high calculated panel-reactive antibody scores at or near 100\%, which is a candidate group with low rates of transplantation due to incompatibility with most donors.63 The new kidney allocation system also increases access for historically disadvantaged candidates, including African Americans, who may be on dialysis for long

62 Ibid.

periods prior to getting on the waiting list for kidneys, by using time on dialysis to determine priority for a kidney rather than time on the waiting list.64

Similar to the update in UNOS allocation policies for kidney transplants, the UNOS allocation policies for liver transplantation changed in June 2013 in order to provide a more equitable system. Under the new allocation policies, referred to as “Share 35,” patients with a Model for End-stage Liver Disease (MELD) score higher than 35 have priority. The goals of the policy change were to reduce the mortality of patients with higher MELD scores on the waiting list and to offer liver transplants more equitably to those who most need them. A study evaluating the mortality of patients on the liver transplant waitlist before and after the implementation of Share 35 found that, nationally, patient mortality rates on the waitlist decreased by 30\% among patients with a MELD score over 30, while there was no change for patients with a MELD score of 30 or less.65 A second study also concluded that, nationally, mortality rates were not worse following implementation of Share 35; however, this study identified regional variation, with mortality rates worsening in some regions following the policy changes.66

The demand for organs has grown rapidly over time and far exceeds the supply of organs available from deceased individuals. In 1991, there were 6,953 organ donors, 15,756 transplants, and 23,198 people on waiting lists for organs.67 In 2014, although the number of donors approximately doubled to 14,412, and the number of transplants similarly increased to

64 Ibid.

29,532, the number of people on the waitlist increased to 123,851.68 Per capita, for African Americans and other minorities, the need for organ transplants is higher than for Caucasians.69 In addition, organ donor consent rates are lower for minorities. One study found that the consent rate among Caucasians was 77.0 percent compared to 67.5 percent for Hispanic Americans, 54.9 percent for African Americans, and 48.1 percent for Asian Americans.70 The lower consent rates were attributed to personal, cultural, and religious beliefs.71 The rates of donation for some organs, such as kidneys, have increased over time for African Americans, and the rates for kidney donation by African Americans exceeded those of Caucasians beginning around 2009.72 In 2013, donation rates for African Americans was very similar to the rates for Asian Americans, the group with the highest rate.73 However, the need for organ transplants is greater among minorities,74 and the increased supply over time does not appear to have resulted in significantly shorter waiting times for these populations, given rapidly expanding organ transplant waitlists.

For individuals who require a kidney or liver, living donation is an option. Living donations promise better outcomes for patients75 and reduced waiting times for an organ transplant. However, multiple studies have identified racial disparities with regard to access to

68 Ibid. \\
71 Ibid. \\
72 United States Renal Data System (USRDS). “Chapter 7: Transplantation.” \texttt{http://www.usrds.org/2015/view/v2_07.aspx} Accessed April 15, 2016. \\
73 Ibid. \\
living donors. Socioeconomic status has also been identified as a barrier for some potential living donors. A study that evaluated access to and utilization of living donors for liver transplants found that African American, Hispanic American, and Asian American patients with liver disease were much less likely than Caucasian patients to receive a living donor liver transplant. This study attributed the difference to fewer inquiries by potential donors for minorities compared to Caucasians. A study evaluating access to living kidney donors also concluded that African Americans, certain other minorities (Asian, Pacific Islander, Native American), and patients of low socioeconomic status have lower odds of a transplant from a living kidney donor. A national study that examined factors affecting racial disparities in living donor kidney transplants for the period 1995-2007 concluded that racial parity was not seen at any transplant center, with the odds of African Americans receiving a living donor kidney transplant ranging from 35% to 76% lower than non-African Americans. The trend in the number of living donors by race over the period 1996-2013 indicates that the number of kidney

79 Ibid.

transplants from living donors to recipients who are African American, Asian American, Native American, or other races has increased only slightly, suggesting that disparities continue to persist.82

Unlike many other types of health care services regulated through the CON process, access to an organ transplant is largely based on the previously discussed federal regulatory system that determines the allocation of donor organs. The Commission regulates the number of organ transplant programs, which in turn affects the competitiveness of the market for organ transplant services. Several studies have examined the relationship between competition among organ transplant centers and patient outcomes. Overall, these studies indicate that increasing competition may have both positive and negative consequences for patients. For example, the total number of transplants performed may be greater due to a greater willingness to use higher risk organs.83 However, using a higher risk kidney or liver in patient may lead to worse outcomes compared to using a lower risk kidney or liver in a patient. A patient who receives a higher risk organ may be better off, if alternatively the patient would remain on the waitlist for an organ transplant for a considerable period of time or not receive an organ transplant at all. A patient who would have received a lower risk organ instead, in a less competitive environment, may be worse off, if complications are more likely to arise from the use of a higher risk organ.

One study found that greater market competition, as measured by the Herfindahl Hirschman Index (HHI), is associated with increased patient mortality and graft failure due to the more aggressive use of riskier kidneys, but also concluded that these outcomes are still an

83 An organ may be considered higher risk based on the age of the deceased donor, the type of death, the level of renal function, or chronic health conditions of the donor. These factors may increase the risk of rejection and the likelihood of surgical complications.
improvement over outcomes for patients on chronic dialysis. A similar study that incorporated distance to transplant centers in the same DSA in addition to a measure of market competition, the HHI, concluded that a greater number of transplant centers was associated with a greater number of transplants, but greater competition was associated with higher patient mortality and worse graft outcomes. However, DSAs with a single transplant center were also more likely to have higher patient mortality and worse graft outcomes, compared to DSAs with a geographically clustered, dispersed, or random distribution of transplant centers. The authors concluded that there is likely an optimal concentration of transplant centers, but they were unable to quantify it. Another study evaluated the impact of market competition among kidney transplant centers on waitlisting of patients for a kidney transplant. This study concluded that, when there is strong competition, all of the transplant centers in a state tend to waitlist more patients for kidney transplants. The inclusion of more patients on the waitlist may be regarded as positive because more patients potentially will receive a kidney transplant.

A study of the impact of market competition among liver transplant centers concluded that greater competition is associated with the inclusion of higher risk patients on waiting lists and more transplants for higher risk patients, with resulting higher costs and worse patient outcomes, including both worse graft survival and higher mortality. The authors concluded that the benefits of competition may include increased access to liver transplants for sicker patients.

86 Ibid.
87 Ibid.
patients and increased utilization of higher risk livers that may otherwise have been discarded; the drawbacks of competition include higher costs and potentially worse matching of donor and recipient characteristics. Another study that examined the relationship between market competition and density of liver transplant centers on volume and outcomes similarly concluded that more liver transplant centers are associated with more liver transplants. Graft failure was also lower in DSAs with only a single transplant center or dispersed transplant centers and higher in DSAs with a clustered distribution, compared to DSAs with a random distribution of centers. However, in this study mortality was not associated with the number of transplant centers or the geographic distribution of liver transplant centers within a DSA, leading the authors to conclude that a greater concentration of centers was associated with more liver transplants without impacting overall survival

Policies

The broad policy objectives shown below guide the Commission’s regulation of the supply and distribution of organ transplantation services in Maryland and serve as a foundation for the standards in this Chapter.

Policy 1: Organ transplantation services will be provided in the most cost effective manner possible consistent with safely and effectively meeting the health care needs of appropriate patients.

Policy 2: Quality will be promoted and evaluated based on the performance measures and standards adopted by CMS for organ transplantation centers.

90 Ibid.
92 Ibid.
93 Ibid.
Policy 3: Community education and outreach will be actively promoted and facilitated by each hospital providing organ transplantation to reduce the prevalence of end stage organ disease, and demand for organ transplantation. Likewise, each hospital providing organ transplantations will also actively promote and facilitate programs to increase the availability of donor organs. The Commission supports the use of Maryland’s Organ and Tissue Donation Awareness Fund for education and outreach and the development of other regional or statewide initiatives to promote organ donation.

Policy 4: A hospital that provides organ transplantation will actively educate patients about how to get on the organ wait list and how to pay for organ transplantation and important follow-up services.

Policy 5: Organ transplantation services will be accessible consistent with efficiently meeting the health care needs of patients.

Policy 6: A hospital that provides organ transplantation will continuously and systematically work to improve the quality and safety of patient care. This includes planning, implementing, and optimizing the use of electronic health record systems and electronic health information exchange that contributes to infection control, care coordination, patient safety, and quality improvement.
.04 Standards

A. General Standards

 (1) An applicant for a Certificate of Need to establish an organ transplantation service shall address and meet the general standards in COMAR 10.24.10.04A.

 (2) Each Maryland transplant program shall agree to comply and maintain compliance with all requirements of CMS and UNOS certification and, if applicable, accreditation by the Foundation for the Accreditation of Cellular Therapy.

 (a) Each organ transplant service shall be certified by UNOS within the first year of operation.

 (b) Each hematopoietic stem cell bone marrow transplant service shall be accredited by the Foundation for the Accreditation of Cellular Therapy within the first two years of operation.

B. Project Review Standards

 (1) Need

 An applicant shall demonstrate that a new or relocated organ transplant center is needed. Closure of an existing service, in and of itself, is not sufficient to demonstrate the need to establish a new organ transplant center. An applicant shall address:

 (a) The ability of the general hospital to increase the supply or use of donor organs for patients served in Maryland through technology innovations, living donation initiatives, and other efforts.

 (b) Projected volume shifts from programs in the two OPOs that serve Maryland residents, detailing the underlying assumptions upon which each projection is based.
(c) The utilization trends for the health planning region in which the proposed organ transplant service will be located and the jurisdictions in which the population to be served resides. If the proposed service will be located in a jurisdiction that shares a border with another health planning region, then the utilization trends in each health planning region shall be addressed.

(2) Minimum Volume Requirements

(a) An applicant shall demonstrate that a proposed organ transplantation service can generate the minimum annual case volume required by this Chapter within the first three years of operation and will likely maintain at least the minimum annual case volume in subsequent years.

(b) An applicant shall acknowledge that, if its application for a Certificate of Need is approved, any approval is conditioned on the applicant’s agreement to close its organ transplant service under the following circumstances:

 (i) A service that meets the minimal annual case volume required for a new service is unable to sustain the minimum annual case volume for any two consecutive years, and is unable:

 1. to provide an explanation acceptable to the Commission as to why it failed to maintain the minimum annual case volume; and

 2. to develop a credible plan for achieving the minimum annual threshold case volume that is approved by the Commission; or

 (ii) The program fails to achieve the minimum annual case volume by a deadline established by the Commission as a result of the program’s failure to achieve the minimum annual case volume requirements.
Table 2: Minimum Annual Case Volume Requirements by Organ Type

<table>
<thead>
<tr>
<th>Organ Type</th>
<th>Minimum Annual Case Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>30</td>
</tr>
<tr>
<td>Pediatric</td>
<td>10</td>
</tr>
<tr>
<td>Liver</td>
<td>12</td>
</tr>
<tr>
<td>Pancreas, Heart/Lung, Intestine (small bowel)</td>
<td>No Volume Requirement</td>
</tr>
<tr>
<td>Heart</td>
<td>12</td>
</tr>
<tr>
<td>Lung</td>
<td>12</td>
</tr>
<tr>
<td>Hematopoietic Stem Cell:</td>
<td></td>
</tr>
<tr>
<td>Autologous</td>
<td>10</td>
</tr>
<tr>
<td>Allogeneic</td>
<td>10</td>
</tr>
<tr>
<td>Other Transplantable Cells</td>
<td>No Volume Requirement</td>
</tr>
<tr>
<td>Islet Cells</td>
<td></td>
</tr>
<tr>
<td>Hepatocytes</td>
<td></td>
</tr>
<tr>
<td>Vascular Allograft</td>
<td>No Volume Requirement</td>
</tr>
</tbody>
</table>

(3) Access

(a) Each type of organ transplant service should be accessible within a three-hour one-way drive time for at least 95 percent of Maryland residents.

(b) An applicant that seeks to justify the need for additional organ transplantation services on the basis of barriers to access shall:

 (i) Present evidence to demonstrate that barriers to access exist, based on studies or validated sources of information, and

 (ii) Present a credible plan to address those barriers. The credibility of the applicant’s plan will be evaluated on whether research studies or empirical evidence from comparable projects support the proposed plan as a mechanism for addressing
each barrier identified, whether the plan is feasible, and whether members of the communities
affected by the project support the plan.

(c) Closure of an existing service, in and of itself, is not sufficient to
demonstrate an access issue or the need to establish a new or replacement organ transplantation
service.

(d) Travel to an organ transplant center located in a health planning
region other than where the organ transplant recipient resides is not, in and of itself, considered a
barrier to access, if the drive time in less than three hours one-way.

(4) Cost Effectiveness

An applicant shall demonstrate that the proposed establishment or
relocation of an organ transplant service is cost-effective by providing:

(a) A demonstration that analyzes why existing programs cannot meet
the need for the organ transplant service for the proposed population to be served.

(b) An analysis of how the establishment or relocation of the proposed
organ transplant service will benefit the population to be served, quantifying these benefits to the
extent feasible and documenting the projected annual costs of the proposed service over a period
of at least five years.

(c) Estimates of the costs to the health care system as a whole and the
benefits of the proposed program, quantifying the benefits to the extent feasible over a period of
five years.

(5) Impact

(a) A new organ transplant service or relocation of an organ transplant
service shall not interfere with the ability of existing transplant services of the same organ type to
maintain at least the three-year average annual threshold case volumes required by this Chapter, as measured by the most recent data available through UNOS; and

(b) A new organ transplant service shall not have an unwarranted adverse impact on the financial viability of another hospital’s organ transplant service of the same type; and

(c) A new organ transplant service shall not have an unwarranted adverse impact on patient access to the same type of organ transplant services at another hospital, the quality of services provided, or patient outcomes following organ transplantation.

(d) An applicant shall provide documentation and analysis that supports:

(i) Its estimate of the impact of the proposed organ transplant service on patient volume at other organ transplant services of the same type in the same health planning region and in other health planning regions that may be impacted. The applicant shall quantify the shifts in case volume for each location; and

(ii) Describe the anticipated impact on access to transplant services for the population residing within a three-hour drive time of the proposed location, including financial and geographic access; and

(iii) Describe the anticipated impact on the quality of care for the population residing within a three-hour drive time of the proposed location.

(e) If a transplant service of the same organ type has been designated as a member not in good standing by the Organ Transplant and Procurement Network, then the potential adverse impacts of the proposed new or relocated organ transplant service on such a program may be disregarded, at the discretion of the Commission.
Table 3: Three-Year Average Annual Threshold Case Volume Requirements by Type of Organ

<table>
<thead>
<tr>
<th>Type of Organ</th>
<th>Threshold Case Volume Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>50</td>
</tr>
<tr>
<td>Pediatric</td>
<td>10</td>
</tr>
<tr>
<td>Liver</td>
<td>20</td>
</tr>
<tr>
<td>Pancreas /Heart Lung</td>
<td>No requirement</td>
</tr>
<tr>
<td>Heart</td>
<td>20</td>
</tr>
<tr>
<td>Lung</td>
<td>20</td>
</tr>
<tr>
<td>Hematopoietic Stem Cell:</td>
<td></td>
</tr>
<tr>
<td>Autologous</td>
<td>10</td>
</tr>
<tr>
<td>Allogeneic</td>
<td>40</td>
</tr>
<tr>
<td>Intestine/Small Bowel, Islet Cells, Hepatocytes.</td>
<td>No requirement</td>
</tr>
<tr>
<td>Vascular Composite Allograft</td>
<td>No requirement</td>
</tr>
</tbody>
</table>

(6) Certification and Accreditation

(a) A general hospital awarded a Certificate of Need to establish an organ transplant service shall be certified by United Network for Organ Sharing within the first year of operation.

(b) A general hospital awarded a Certificate of Need to establish a hematopoietic stem cell transplant program shall meet accreditation requirements of the Foundation for the Accreditation of Cellular Therapy (FACT) within the first two years of operation. An applicant shall apply and be FACT-accredited within 12 months of becoming eligible to apply for accreditation and shall maintain its accreditation thereafter.

(c) A general hospital seeking to establish an organ transplant service must be accredited by the Joint Commission.
(7) **Health Promotion and Disease Prevention**

An organ transplant program shall actively and continuously engage in health promotion and disease prevention activities aimed at reducing the prevalence of end stage organ disease and increasing the availability of donor organs. An applicant must describe the relevant preventive services designed to address those at greatest risk for end stage organ failure.

(8) **Comparative Reviews**

In a comparative review of applications to establish a transplant service for the same type of organ in which all applicants have met all policies and standards, the Commission will give preference to the applicant that:

(a) Has established effective community education and outreach programs that focus on prevention, early detection, and treatment of diseases and conditions that may lead to end-stage organ disease, such as diabetes, coronary artery disease, alcohol and substance abuse, and hypertension, with particular outreach to minority and indigent patients in the hospital’s regional service area; and

(b) That is most likely to establish a proposed organ transplant service that will reach minority and indigent patients, as demonstrated by:

 (i) The applicant's record of serving minority and indigent patients; and

 (ii) The applicant's record of establishing programs for outreach to the minority and indigent populations; and

(c) That shows improved outcomes or improved health status of the populations that it serves based on an evaluation of the effectiveness and efficiency of the applicant’s disease prevention and intervention programs.
.05 Definitions.

(1) *Adult* refers to patients age 18 or older. An adult program is one that serves a majority of patients over age 18.

(2) *Health planning region* means the geographic area designated by the United Network for Organ Sharing for each of the two Organ Procurement Organization serving Maryland residents.

(3) *Hematopoietic stem cell transplant* means a stem cell or bone marrow transplant procedure identified by the following International Classification of Diseases (9th Revision, Clinical Modification) procedure codes: 41.00 through 41.09 or the 10th edition procedure codes: 30230G0 through 30263G1.

(4) *Member not in good standing* is a public designation of an OPTN member institution that has failed to meet key expectations for compliance with OPTN requirements. It could also apply to a member with a current situation that could pose a risk to the health and safety of transplant patients, living donors or other members of the public. This could involve a single adverse event or a pattern of unresolved behavior.

(5) *Organ Procurement Organization (OPO)* means a federally designated organ procurement agency.

(6) *Organ Procurement and Transplantation Network (OPTN)* refers to the Organ Procurement and Transplantation Network, a national transplant network established by federal law (the National Organ Transplant Act of 1984) and federal regulations (the OPTN Final Rule).

(7) *Organ transplant services* means inpatient or outpatient services for patients preparing for and receiving an organ transplant, and the follow-up services directly related to the organ transplant.
(8) *Organ transplant or transplantation* means surgical procedures involving the graft or transfer of major solid organs (kidney, liver, pancreas, heart, and lung), intestine (small bowel), hematopoietic stem cells (autologous, allogeneic), other transplantable cells (islet cells, hepatocytes), and vascular composite allografts.

(9) *Pediatric* refers to patients under age 18. A pediatric program is one that serves a majority of patients under age 18.

(10) *Transplant* means organ transplant.